Deteksi Osilasi Kontrol Proses Industri dengan Menggunakan Jaringan Saraf Tiruan - Review

Authors

  • Nukman Tsaqib Tsanya Gadjah Mada University
  • A.N.I. Wardana Gadjah Mada University
  • Nazrul Effendy Gadjah Mada University

DOI:

https://doi.org/10.21776/jeeccis.v16i3.1468

Keywords:

Deteksi, Industri, Osilasi, Jaringan Saraf Tiruan

Abstract

Osilasi kontrol loop adalah salah satu masalah yang sering terjadi di proses industri. Osilasi menyebabkan variabel proses tidak dapat dipertahankan pada kondisi yang diinginkan yang akan menyebabkan kerugian finansial pada industri. Selama beberapa tahun terakhir sudah banyak penelitian yang dilakukan, dan salah satu pendekatan yang semakin banyak digunakan adalah menggunakan jaringan saraf tiruan (JST). Tulisan ini memberikan gambaran tentang karakterisktik JST dan penerapannya untuk deteksi dan diagnosis osilasi kontrol pada proses industri. Dari beberapa studi yang dipelajari, arsitektur JST yang paling umum dipilih untuk proses deteksi osilasi adalah multilayer perceptron (MLP), convulational neural network (CNN) dan recurrent neural network (RNN). Tiap arsitektur tersebut memiliki karakteristik dan fungsi yang berbeda. MLP memiliki karakteristik yang sederhana, dan fleksibel dibandingkan jaringan lainnya. CNN bekerja sangat baik untuk melakukan teknik deteksi dengan menggunakan pengenalan pola. Sementara RNN sangat baik digunakan untuk mendeteksi sistem dinamis pada proses industri.

Author Biographies

Nukman Tsaqib Tsanya, Gadjah Mada University

Departemen Teknik Nuklir dan Teknik Fisika

A.N.I. Wardana, Gadjah Mada University

Departemen Teknik Nuklir dan Teknik Fisika

Nazrul Effendy, Gadjah Mada University

Departemen Teknik Nuklir dan Teknik Fisika

References

J. W. V. Dambros, J. O. Trierweiler, M. Farenzena, and M. Kloft, “Oscillation Detection in Process Industries by a Machine Learning-Based Approach,” Ind. Eng. Chem. Res., vol. 58, no. 31, pp. 14180–14192, Aug. 2019, doi: 10.1021/acs.iecr.9b01456.

J. W. V. Dambros, J. O. Trierweiler, and M. Farenzena, “Oscillation detection in process industries – Part I: Review of the detection methods,” Journal of Process Control, vol. 78, pp. 108–123, Jun. 2019, doi: 10.1016/j.jprocont.2019.04.002.

D. F. Rabba, A. N. I. Wardana, and N. Effendy, “Intermittent Oscillation Diagnosis in a Control Loop Using Extreme Gradient Boosting,” Jurnal Nasional Teknik Elektro, in press.

E. D. Kurniawan, N. Effendy, A. Arif, K. Dwiantoro, and N. Muddin, “Soft sensor for the prediction of oxygen content in boiler flue gas using neural networks and extreme gradient boosting,” Neural Comput & Applic, Sep. 2022, doi: 10.1007/s00521-022-07771-8.

N. Effendy, D. Ruhyadi, R. Pratama, D. F. Rabba, A. F. Aulia, and A. Y. Atmadja, “Forest quality assessment based on bird sound recognition using convolutional neural networks,” International Journal of Electrical and Computer Engineering (IJECE), vol. 12, no. 4, Art. no. 4, Aug. 2022, doi: 10.11591/ijece.v12i4.pp4235-4242.

S. N. Sembodo, N. Effendy, K. Dwiantoro, and N. Muddin, “Radial basis network estimator of oxygen content in the flue gas of debutanizer reboiler,” International Journal of Electrical and Computer Engineering (IJECE), vol. 12, no. 3, pp. 3044–3050, 2022, doi: 10.11591/ijece.v12i3.pp3044-3050.

N. Effendy, E. D. Kurniawan, K. Dwiantoro, A. Arif, and N. Muddin, “The Prediction of Oxygen Content of the Flue Gas in a Gas-Fired Boiler System Using Neural Networks and Random Forest,” IAES International Journal of Artificial Intelligence (IJ-AI), vol. 11, no. 3, pp. 923–929, 2022.

R. Bacci di Capaci and C. Scali, “Review and comparison of techniques of analysis of valve stiction: From modeling to smart diagnosis,” Chemical Engineering Research and Design, vol. 130, pp. 230–265, Feb. 2018, doi: 10.1016/j.cherd.2017.12.038.

T. Wang, Y. Chen, M. Qiao, and H. Snoussi, “A fast and robust convolutional neural network-based defect detection model in product quality control,” Int J Adv Manuf Technol, vol. 94, no. 9–12, pp. 3465–3471, Feb. 2018, doi: 10.1007/s00170-017-0882-0.

A. A. A. Mohd Amiruddin, H. Zabiri, S. A. A. Taqvi, and L. D. Tufa, “Neural network applications in fault diagnosis and detection: an overview of implementations in engineering-related systems,” Neural Comput & Applic, vol. 32, no. 2, pp. 447–472, Jan. 2020, doi: 10.1007/s00521-018-3911-5.

J. Kim, M. Jin, Y. Homma, A. Sim, W. Kroeger, and K. Wu, Extract Dynamic Information to Improve Time Series Modeling: a Case Study with Scientific Workflow. 2022. doi: 10.48550/arXiv.2205.09703.

B. C. Hwang, M. Saif, and M. Jamshidi, “Neural Based Fault Detection and Identification for a Nuclear Reactor,” IFAC Proceedings Volumes, vol. 26, no. 2, Part 5, pp. 547–550, Jul. 1993, doi: 10.1016/S1474-6670(17)48326-1.

R. Rengaswamy, T. Hägglund, and V. Venkatasubramanian, “A qualitative shape analysis formalism for monitoring control loop performance,” Engineering Applications of Artificial Intelligence, vol. 14, no. 1, pp. 23–33, Feb. 2001, doi: 10.1016/S0952-1976(00)00051-8.

S. Heo and J. H. Lee, “Fault detection and classification using artificial neural networks,” IFAC-PapersOnLine, vol. 51, no. 18, pp. 470–475, 2018, doi: 10.1016/j.ifacol.2018.09.380.

Z. Wang, H. Xia, W. Yin, and B. Yang, “An improved generative adversarial network for fault diagnosis of rotating machine in nuclear power plant,” Annals of Nuclear Energy, vol. 180, p. 109434, Jan. 2023, doi: 10.1016/j.anucene.2022.109434.

S. R. Kumar and J. Devakumar, “Performance evaluation of neural network topologies for online state estimation and fault detection in pressurized water reactor,” Annals of Nuclear Energy, vol. 175, p. 109235, Sep. 2022, doi: 10.1016/j.anucene.2022.109235.

S. Yong and Z. Linzi, “Robust deep auto-encoding network for real-time anomaly detection at nuclear power plants,” Process Safety and Environmental Protection, vol. 163, pp. 438–452, Jul. 2022, doi: 10.1016/j.psep.2022.05.039.

D. E. P. Lebukan, A. N. I. Wardana, and N. Effendy, “Implementation of Plant-Wide PI-Fuzzy Controller in Tennessee Eastman Process,” in 2019 International Seminar on Application for Technology of Information and Communication (iSemantic), 2019, pp. 450–454.

I. Pavlenko, V. Ivanov, I. Kuric, O. Gusak, and O. Liaposhchenko, “Ensuring Vibration Reliability of Turbopump Units Using Artificial Neural Networks,” in Advances in Manufacturing II, Cham, 2019, pp. 165–175. doi: 10.1007/978-3-030-18715-6_14.

N. Mohd Aszemi and D. D. D. Panneer Selvam, “Hyperparameter Optimization in Convolutional Neural Network using Genetic Algorithms,” International Journal of Advanced Computer Science and Applications, vol. 10, pp. 269–278, Jun. 2019, doi: 10.14569/IJACSA.2019.0100638.

V. Prabhu, R. Velnath, S. Krishnakumar, and M. Prathap, “Linear Sliding Stem Control Valve Hunting Analysis and Extrapolation of Valve Monitoring Features,” International Journal of Innovative Technology and Exploring Engineering, vol. 9, no. 4, pp. 1385–1389, 2020, doi: https://doi.org/10.35940/ijitee.d1640.029420.

D. Zheng, X. Sun, S. K. Damarla, A. Shah, J. Amalraj, and B. Huang, “Valve Stiction Detection and Quantification Using a K-Means Clustering Based Moving Window Approach,” Industrial & Engineering Chemistry Research, vol. 60, no. 6, pp. 2563–2577, Feb. 2021, doi: 10.1021/acs.iecr.0c05609.

Y. Yamashita, “An automatic method for detection of valve stiction in process control loops,” Control Engineering Practice, vol. 14, no. 5, pp. 503–510, May 2006, doi: 10.1016/j.conengprac.2005.03.004.

J. W. V. Dambros, M. Farenzena, and J. O. Trierweiler, “Oscillation Detection and Diagnosis in Process Industries by Pattern Recognition Technique,” IFAC-PapersOnLine, vol. 52, no. 1, pp. 299–304, 2019, doi: 10.1016/j.ifacol.2019.06.078.

B. Kamaruddin, H. Zabiri, A. A. A. Mohd Amiruddin, W. K. Teh, M. Ramasamy, and S. S. Jeremiah, “A simple model-free butterfly shape-based detection (BSD) method integrated with deep learning CNN for valve stiction detection and quantification,” Journal of Process Control, vol. 87, pp. 1–16, Mar. 2020, doi: 10.1016/j.jprocont.2020.01.001.

A. A. A. Mohd Amiruddin, H. Zabiri, S. S. Jeremiah, W. K. Teh, and B. Kamaruddin, “Valve stiction detection through improved pattern recognition using neural networks,” Control Engineering Practice, vol. 90, pp. 63–84, Sep. 2019, doi: 10.1016/j.conengprac.2019.06.008.

N. R. Vazquez, D. Fernandes, and D. Chen, “Control valve stiction: experimentation, modeling, model validation, and detection with convolution neural network,” International Journal of Chemical Engineering and Applications, vol. 10, Oct. 2019, doi: 10.18178/ijcea.2019.10.6.768.

D. Kozikowski, A. Sulich, and T. Zema, Artificial Intelligence Usage and Ethics in the Choice Theory. 2020. doi: 10.5281/zenodo.4083767.

S. A. Taqvi, L. D. Tufa, H. Zabiri, A. S. Maulud, and F. Uddin, “Fault detection in distillation column using NARX neural network,” Neural Comput & Applic, vol. 32, no. 8, pp. 3503–3519, Apr. 2020, doi: 10.1007/s00521-018-3658-z.

S. Malekmohamadi Faradonbe, F. Safi-Esfahani, and M. Karimian-kelishadrokhi, “A Review on Neural Turing Machine (NTM),” SN COMPUT. SCI., vol. 1, no. 6, p. 333, Oct. 2020, doi: 10.1007/s42979-020-00341-6.

H. Zabiri and N. Mazuki, “A Black-Box Approach in Modeling Valve Stiction,” vol. 4, no. 8, p. 8, 2010.

Downloads

Published

2022-12-31

How to Cite

[1]
N. T. Tsanya, A. Wardana, and N. Effendy, “Deteksi Osilasi Kontrol Proses Industri dengan Menggunakan Jaringan Saraf Tiruan - Review”, jeeccis, vol. 16, no. 3, pp. pp 71–78, Dec. 2022.

Issue

Section

Articles