ANALISIS PENGARUH FRASA PADA DETEKSI EMOSI DARI TEKS MENGGUNAKAN VECTOR SPACE MODEL

Ranap Sitorus, Harry Soekotjo Dachlan, Wijono Wijono

Abstract


Text communication is one way of conveying information about one's attitudes and emotional state. Emotion is also very important role in taking a decision such as doing emotion detection from the text of the questionnaire. Text emotions are detected at various stages to be recognizable by the computer. The steps taken are preprocessing the case folding, tokenizing, filtering and stemming. In this emotional detection research, For grouping words based on word class, using POS-Tagging where approach based rule rule based containing combination of word class which most likely when combined will form a phrase in order to facilitate the computer in understanding the characteristics of a phrase. The phrases-based detection-based tokenisation process uses the Hidden Markov Model (HMM) POS-Tagger for easy classification using the Tf-Idf and VSM methods. This study aims to classify text communication in Indonesia language into emotional expression classes into 3 basic emotional classes and serve as training documents and test documents obtained from the results of student questionnaires as many as 264 documents. The computer is able to detect emotion with the corpus data by performing sentences into words or phrases using Chunk that can classify emotions happy, disappointed and afraid. From the test results for 90% training data and 10% test data in detecting emotions using Phrase got 92.59%

Full Text:

PDF

References


Hirat, R., & Mittal, N. (2015). A Survey On Emotion Detection Techniques using Text in Blogposts. International Bulletin of Mathematical Research Vol 2, Issue 1: pp. 180-187.Andriani, M. (2008). Information Retrieval, Modul Kuliah PemrosesanTeks Fakultas Ilmu Komputer UI semester ganjil 2009.

Sugiono. (2005). Metode Penelitian Administrasi.Bandung. Alfabeta.

Adriani, M., Asian, J., Nazief, B., Tahaghoghi, S.M.M., & Williams, H.E. (2007). Stemming Indonesian : A Confix-Stripping Approach. Transaction on Asian Langeage Information Processing. Association for Computing Machinery . New York: Vol. 6, No. 4, Articel 13.

Aman, S. & Szpakowicz, S., 2007. Identifying Expressions of Emotion in Text. In Text, Speech and Dialogue, Lencture Notes in Artificial Intelligence Vol 4629, pp. 196-205.

Ghazi, D., Inkpen, D. & Szpakowicz, S., 2010. Hierarchical approach to emotion recognition and classification in texts. Advances in Artificial Intelligence LNCS Vol 6085, pp. 40-50.

Ghazi, D., Inkpen, D. & Szpakowicz, S., 2014. Prior and contextual emotion of words in sentential context. Computer Speech and Language 28, pp. 76-92.

Mohammad, S.M., 2012a. From once upon a time to happily even after: Tracking emotions in mail and books. Decision Support Systems 53, pp. 730-741.

Bata, J. (2015).Leksikon untuk deteksi emosi dari teks bahasa indonesia Seminar Nasional Informatika 2015 (semnasIF 2015) UPN ”Veteran” Yogyakarta, 14 November 2015.ISSN:1979-2328: Pages 195-202.

Hemalatha, I., Varma, P.G., dan Govardhan, A., 2012, Preprocessing the Informal Text for Efficient Sentiment Analysis, International Journal of Emerging Trends & Technology in Computer Science (IJETTCS), Vol. 1, July – August 2012, ISSN 2278-6856.

Goleman, D. (2007). Kecerdasan Emosional. Jakarta: PT. Gramedia Pustakan Utama.

Salton, G. (1989). Automatic Text Processing, The Transformation, Analysis, and Retrieval of information by computer. Addison – Wesly Publishing Company, Inc. USA.

Baeza, R.Y. & Neto, R. (1999). Modern Information Retrieval. Addison Wesley-Pearson international edition, Boston. USA.

Tala, F. Z. (2003). A Study of Stemming Efects on Information Retrieval in bahasa Indonesia. Institute for logic, Language ang Computation Universiteit van Amsterdam the Netherlands. https://www.illc.uva.nl/Research/Publications/Reports/MoL-2003-02.text.pdf. (diakses tanggal 20 Oktober 2015).

Mandala, R. (2004). Bahan kuliah sistem temu balik informasi. Institut Teknologi Bandung. Departemen teknik informatika .

Robertson, S. E. (2004). Understanding Inverse Document Frequency: On Theoretical Arguments for IDF. Reprinted from Journal of Documentation 60: 503-520. URL: http://www.staff.city.ac.uk/~sb317/idfpapers/Robertson_idf_JDoc.pdf. (diakses tanggal 20 Oktober 2015).

Turney, P.D. & Pantel, P. (2010). From Frequency to Meaning: Vector Space Models of Semantics. Journal of Artificial Intelligence Research. 37: 141-188.

Ning, L. et al. (2004). Learning Similarity Measures in Non-orthogonal Space. CIKM'04, Washington D.C., U.S.A.

Garcia, E. (2012). The Classic Vector Space Model. Retrieved URL:http://www.miislita.com/term- vector/term-vector-3.html. (diakses tanggal 15 November 2016).

Ekman, P. (1992). An Argument for Basic Emotion.Cognition and Emotion, 6(3/4), pp. 169-200.

A. A. Armana, A. B. Putra, A. Purwarianti dan Kuspriyanto, “Syntactic Phrase Chunking for Indonesian Language”, Science Direct, pp. 635-640, 2013.

Purwarianti, A. & Wicaksono, A. F. (2010). HMM Based Part-Of-Speech Tagger for Bahasa Indonesia. On Proceedings of 4th International MALINDO (Malay and Indonesian Language) Workshop.


Refbacks

  • There are currently no refbacks.