Pengaruh Cahaya Ruang pada Pembangkitan Energi Solar Panel

Authors

  • Sapriesty Nainy Sari Department of Electrical Engineering, Universitas Brawijaya
  • Indra Setyawan Department of Electrical Engineering, Universitas Brawijaya
  • Lunde Ardhenta Department of Electrical Engineering, Universitas Brawijaya

DOI:

https://doi.org/10.21776/jeeccis.v16i2.1602

Keywords:

harvest energy, monitoring, cahaya ruang, logger real time

Abstract

Salah satu sumber energi baru dan tetbarukan yang mudah sekali dikembangkan adalah sumber melalui Solar Cell atau lebih dikenal dengan photovoltaic. Solar Cell sendiri pada umumnya hanya mengandalkan cahaya yang dihasilkan oleh matahari sedangkan cahaya tidak hanya dihasilkan oleh matahari saja akan tetapi cahaya yang dihasilkan oleh lampu penerangan ruanganpun bisa dimanfaatkan untuk pemabngkitan energi menggunakan photovoltaic. Dalam makalah ini mencoba Melakukan pembangkitan energi photovoltaic dengan memanfaatkan cahaya ruangan atau harvesting energy dengan media cahaya ruang. Metode penelitian yang digunakan yaitu dengan memanfaatkan papan solar cell dengan spesifikasi 100Wp serta cahaya ruang kerja yang berasal dari gabungan lampu penerangan ruang dengan pantulan sinar matahai. Sebagai data analisis beberapa besaran dilakukan pencatatan secara realtime antara lain besaran tegangan, arus, serta daya yang terbangkitkan oleh solar cell. Selain itu juga besaran intensitas cahaya ruang atau lumens ruang.

References

S. R. Madeti and S. N. Singh, “Monitoring system for photovoltaic plants: A review,” Renewable and Sustainable Energy Reviews. 2017, doi: 10.1016/j.rser.2016.09.088.

J. Agrawal and M. Aware, “Photovoltaic system emulator,” 2012, doi: 10.1109/PEDES.2012.6484360.

I. M. Moreno-Garcia et al., “Real-time monitoring system for a utility-scale photovoltaic power plant,” Sensors (Switzerland), 2016, doi: 10.3390/s16060770.

R. Ikhsan, I. D. Sara, and R. S. Lubis, “Studi Kasus Kelayakan Penerapan Sistem Hybrid Building Applied Photovoltaics (BAPV)-PLN pada Atap Gedung Politeknik Aceh,” J. Rekayasa Elektr., 2017, doi: 10.17529/jre.v13i1.6071.

F. Bayrak, N. Abu-Hamdeh, K. A. Alnefaie, and H. F. Öztop, “A review on exergy analysis of solar electricity production,” Renewable and Sustainable Energy Reviews. 2017, doi: 10.1016/j.rser.2017.03.012.

M. K. Behera, I. Majumder, and N. Nayak, “Solar photovoltaic power forecasting using optimized modified extreme learning machine technique,” Eng. Sci. Technol. an Int. J., 2018, doi: 10.1016/j.jestch.2018.04.013.

H. E. Gad and H. E. Gad, “Development of a new temperature data acquisition system for solar energy applications,” Renew. Energy, 2015, doi: 10.1016/j.renene.2014.08.006.

L. J. Claros-Marfil, J. F. Padial, and B. Lauret, “A new and inexpensive open source data acquisition and controller for solar research: Application to a water-flow glazing,” Renew. Energy, 2016, doi: 10.1016/j.renene.2016.02.037.

P. Papageorgas, D. Piromalis, K. Antonakoglou, G. Vokas, D. Tseles, and K. G. Arvanitis, “Smart solar panels: In-situ monitoring of photovoltaic panels based on wired and wireless sensor networks,” 2013, doi: 10.1016/j.egypro.2013.07.062.

S. A. Jumaat and M. H. Othman, “Solar Energy Measurement Using Arduino,” 2018, doi: 10.1051/matecconf/201815001007.

S. Sadowski and P. Spachos, “Solar-Powered Smart Agricultural Monitoring System Using Internet of Things Devices,” 2019, doi: 10.1109/IEMCON.2018.8614981.

F. Touati, M. A. Al-Hitmi, N. A. Chowdhury, J. A. Hamad, and A. J. R. San Pedro Gonzales, “Investigation of solar PV performance under Doha weather using a customized measurement and monitoring system,” Renew. Energy, 2016, doi: 10.1016/j.renene.2015.12.046.

A. J. Lewis, M. Campbell, and P. Stavroulakis, “Performance evaluation of a cheap, open source, digital environmental monitor based on the Raspberry Pi,” Meas. J. Int. Meas. Confed., 2016, doi: 10.1016/j.measurement.2016.03.023.

J. M. Paredes-Parra, A. Mateo-Aroca, G. Silvente-Niñirola, M. C. Bueso, and Á. Molina-García, “PV module monitoring system based on low-cost solutions: Wireless raspberry application and assessment,” Energies, 2018, doi: 10.3390/en11113051.

M. E. Andreoni López, F. J. Galdeano Mantiñan, and M. G. Molina, “Implementation of wireless remote monitoring and control of solar photovoltaic (PV) system,” 2012, doi: 10.1109/TDC-LA.2012.6319050.

F. Shariff, N. A. Rahim, and W. P. Hew, “Zigbee-based data acquisition system for online monitoring of grid-connected photovoltaic system,” Expert Syst. Appl., 2015, doi: 10.1016/j.eswa.2014.10.007.

K. H. Chao and C. T. Chen, “A remote supervision fault diagnosis meter for photovoltaic power generation systems,” Meas. J. Int. Meas. Confed., 2017, doi: 10.1016/j.measurement.2017.03.017.

S. Rosiek and F. J. Batlles, “A microcontroller-based data-acquisition system for meteorological station monitoring,” Energy Convers. Manag., 2008, doi: 10.1016/j.enconman.2008.05.029.

M. J. Prieto, A. M. Pernía, F. Nuño, J. Díaz, and P. J. Villegas, “Development of a wireless sensor network for individual monitoring of panels in a photovoltaic plant,” Sensors (Switzerland), 2014, doi: 10.3390/s140202379.

L. Saraiva, A. Alcaso, P. Vieira, C. F. Ramos, and A. M. Cardoso, “Development of a cloud-based system for remote monitoring of a PVT panel,” Open Eng., 2016, doi: 10.1515/eng-2016-0041.

S. H. Pramono, S. N. Sari, and E. Maulana, “Internet-based monitoring and protection on PV smart grid system,” 2018, doi: 10.1109/SIET.2017.8304180.

E. Maulana, R. K. Subroto, and L. Ardhenta, “PV smart grid monitoring system based on hybrid telepot and web server,” Indones. J. Electr. Eng. Comput. Sci., 2018, doi: 10.11591/ijeecs.v10.i3.pp1061-1069.

Downloads

Published

2022-08-31

How to Cite

[1]
S. N. Sari, I. Setyawan, and L. Ardhenta, “Pengaruh Cahaya Ruang pada Pembangkitan Energi Solar Panel”, jeeccis, vol. 16, no. 2, pp. pp 64–70, Aug. 2022.

Issue

Section

Articles