Desain Pembangkit Listrik Tenaga Mikro Hidro Terapung

Suparman Suparman, Hadi Suyono, Rini Nur Hasanah

Abstract


Potential renewable energy source in Indonesia today for hydropower around 75.67 GW and newly used about 4.2 GW. Utilization of energy in the present has been directed to the use of renewable energy in nature. Based on that idea, innovation and testing are done by designing Floating hydro power plant (FHPP) FHPP is designed by utilizing irrigation water sources to meet small-scale power consumption, especially for household consumers with 450-500 watts of power. FHPP design process is done by first analyzing the related data such as planned power and other related variables. After the size and dimensions of FHPP is known the next stage is to make the model FHPP using Ansys 18.00 software, the goal to find the optimal design of FHPP which can generate electrical power between 300-450 watts. While the components of FHPP itself consists of pontoon, waterwheel, permanent magnet generator (GMP) as an electricity generator, voltage rectifier, voltage stabilizer and battery that serves to store voltage generated by GMP. After FHPP design is completed the next stage is the mechanical testing of FHPP by using an electric motor as a substitute for water flow and experimental testing conducted by utilizing irrigation water flow. From this test obtained voltage generated by gmp is direct current (DC) with a maximum power of 480 Watt, 600 gpm rpm rotation with maximum torque of gmp of 0.42 kgm. The resulting voltage is converted to alternating current (AC) by using a converter so that it can be used to meet household electrical needs.

 

 


Full Text:

PDF

References


Permen, 2006. Menteri Negara Riset dan Teknologi Republik Indonesia

BPPT, 2014. Outlook energi indonesia.

Filho, W. P., 2003. Floating power station for production of electric energy signed by Wilson Pierazoli Filho and Tabeliao Triginelli a Notary Public of the 3rd District).

Michael J.S. 2005. Floating water current driven electrical power generation system.

Navitron. 2011. Manual Floating Water Turbine Generator.

Yani. A., Wahyudi. S., Denny. W., 2012. Pengaruh variasi panjang sudu mangkok terhadap kinerja turbin kinetik. Prosiding Seminar Nasional Science, Engineering and Technology, Brawijaya Malang

Ohoirenan. W, Wahyudi. S., Sutikno. D., 2012. Pengaruh Variasi Jumlah Sudu Terhadap Kinerja Turbin Kinetik Roda Tunggal. Prosiding Seminar Nasional Science, Engineering and Technology, Brawijaya Malang.

Pietersz. R., Soenoko. R., Wahyudi. S., 2013. Pengaruh jumlah sudu terhadap optimalisasi kinerja turbin kinetik roda tunggal.

Shantika. T., Ali., Anggara. A., Ihsanudin. A., 2013. Pemanfaatan aliran sungai dangkal untuk pembangkit listrik picohydro menggunakan floating turbine 47 watt.

Budiarso. 2003. Mekanika fluida jilid keempat Erlangga Jakarta.

Sule. R. 2012 Kinerja roda air plat arus bawah dengan variasi jumlah sudu.

Munson. B.R., Young. D.F., Okiishi. T.H., 2009. Mekanika Fluida Jilid 2. Edisi ke empat, Airlangga, Jogyakarta

Prayatmo, Wibowo. 2007. Turbin air penerbit graha ilmu yogyakarta

Fizal. W.M., Febriani.O., 2015. Rancang dan bangun kincir air dan pulley sebagai penunjang kinerja PLTMH.

Darmawi. 2013. Pengembangan kemandirian energi pedesaan berwawasan lingkungan melalui rancang bangun kincir air apung pada saluran sekunder daerah reklamasi rawa pasang surut.

Unggul. W., 2014. Waterwheel design of micro hydro power plant Bendosari Village Districts Pujon Malang.

Puji. S., Satwiko., S., Taufik. 2012. Studi awal pengaruh jumlah sudu terhadap daya keluaran turbin angina tipe horizontal berdiameter 1,6 meter sebagai sumber penyedia listrik pada proyek rumah DC di FMIPA UNJ.

Yelguntwar. P., Bhange. P., Lilhare. Y., Bahadure. A., 2014. Design, fabrication & testing of a waterwheel for power generation in an open channel flow.

Sularso, Suga. K. 1997. Dasar dasar perencanaan dan pemilihan elemen mesin Penerbit PT. Pradnya Paramita Jakarta.

Jiansi. 2016 Catalogue wind turbine charge controller user manual.

Dijksterhuis, E.J. 2014. Archimedes. Princeton University Press.

Williams, A.N., Lee, H.S., and Huang, Z. 2000. Floating pontoon breakwaters. Ocean Engineering.

Tampi. A.R. 2011. Reviews: Pontoon, an alternative flexibale cheap mounting option for the renewable decentralized river current turbine power service.

Prasetio. B., Chrismianto. D., Iqbal. M. 2015. Analisis pengaruh geometri dan jumlah sudu terhadap performasi wells turbine.

Nakasone. Y., Yoshimoto. S., Stolarski. T.A. 2006. Engineering Analysis With ANSYS Software.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.